

MATRIX Motion Sensor MS-001 V2

1. Feature

- · Support Euler angle data.
- · Support Gyro data, accel data.
- · Sample rate 100Hz.

2. Application

- \cdot Balance control
- · Attitude recognize
- \cdot Navigation

3. Introduction

MATRIX Motion sensor is an Inertial Measurement Unit 6-Degree Of Freedom sensor, communicate by I2C interface. Support Euler angle and accel/gyro raw data.

MATRIX Motion Sensor MS-001V2

5. Pinout

Pinout						
NO.	. Name I/O Description					
1	SDA	I/O	Serial data line.			
2	SCL	Ι	Serial clock line.			
3	VCC	Ι	Supply voltage.			
4	GND	-	Supply ground.			

6. Electrical Characteristics

Parameter	Min	Тур	Max	Units
Supply Voltage (VCC)	3	3.3	5	V
Sample rate	-	100	-	Hz
Acceleration measurement range	-4	-	4	g
Angular rate measurement range	-2000	-	2000	dps
I2C operating speed	100	-	400	KHz
I2C Low-Level Input Voltage	-0.5V	-	0.33*VCC	-
I2C High-Level Input Voltage	0.7*VCC	-	VCC	-

7. Usage

The MATRIX motion sensor follows the 7-bit I2C bus protocol by Philips. To access the sensor's functions, there are two ways that the master device should follow depends on Read or Write situation.

To get the i2c library for Matrix color sensor, please visit sites as below:

Arduino Library : <u>https://github.com/Matrix-Robotics/MatrixMotionSensor</u> Microbit Library : <u>https://github.com/Matrix-Robotics/pxt-MatrixMotion</u>

8. I2C Register Tabel

8.1. Register definitions

Register Tabel (Summary)							
Register(hex)	Name	Name R/W Reset Valu		BITS Description			
01h	Device ID	R	0x44	Device ID [7:0]			
02h	Device Control	R/W	0x00	Device Control [4:0]			
03h	ROLL_L	R	0x00	Doll dograa [1E·0]			
04h	ROLL_H	R	0x00	Koll degree [15.0]			
05h	PITCH_L	R	0x00	VAW dogroo [15:0]			
06h	PITCH_H	R	0x00	TAW degree [15.0]			
07h	YAW_L	R	0x00	Ditch dograa [15:0]			
08h	YAW_H	R	0x00	Plich degree [15.0]			
09h	GYRO_X_L	R	0x00	guracana y Avic [1E·0]			
0Ah	GYRO_X_H	R	0x00	gyroscope x-Axis [15.0]			
0Bh	GYRO_Y_L	R	0x00	duracaana y Avia [1E.0]			
0Ch	GYRO_Y_H	R	0x00	gyroscope y-Axis [15.0]			
0Dh	GYRO_Z_L	R	0x00	duracaana z Avia [1E.0]			
0Eh	GYRO_Z_H	R	0x00	gyroscope z-Axis [15.0]			
OFh	ACCEL_X_L	R	0x00	accoloromotor y Avic [1E:0]			
10h	ACCEL_X_H	R	0x00				
11h	ACCEL_Y_L	R	0x00	appeloromatory Avia [4 E.C			
12h	ACCEL_Y_H	R	0x00	accelerometer y-Axis [15:0]			
13h	ACCEL_Z_L	R	0x00	accoloromator - Avia [15:0]			
14h	ACCEL_Z_H	R	0x00				

8.2. Device ID

The Device ID register is one-byte / read-only data. This register will always return 0x44 even when the device power is disabled.

Device ID (01h)						
Bit	Bit Name R/W Reset Value Description					
7 to 0	Device ID [7:0]	R	0x44	Device ID [7:0]		

8.3. Device Control

The Device Control register is used primarily to power the device on and off.

Device Control (02h)						
Bit	Name	R/W	Default	Description		
7	-	R	0	Reserved		
6	-	R	0	Reserved		
5	-	R	0	Reserved		
4	-	R	0	Reserved		
3	-	R	0	Reserved		
2	-	R	0	Reserved		
1	RST	W	0	Set bit to 1 to reset sensor to default status.		
0	PWR	R/W	0	Enable/disable device power.		

8.4. Eular Angle

Eular angle from -180 to 180, format by 16-bits signed numbers

Eular Angle(03h~08h)						
Register(hex)	Name	R/W	Reset Value	BITS Description		
03h	Roll degree L [15:8]					
04h	Roll degree H [7:0]					
05h	YAW degree L [15:8]	D	0x0000	Data of the target axis [15:0]		
06h	YAW degree H [7:0]	К				
07h	Pitch degree L [15:8]					
08h	Pitch degree H [7:0]					

8.5. Gryo Data

Gryo data from -2000 to 2000, format by 16-bits signed numbers, unit = dps.

Gyro Data(09h~0Eh)						
Register(hex)	Register(hex) Name		Reset Value	BITS Description		
09h	GYRO_X_L [15:8]					
0Ah	GYRO_X_H [7:0]		0x0000	Data of the target axis [15:0]		
0Bh	GYRO_Y_L [15:8]					
0Ch	GYRO_Y_H [7:0]					
0Dh	GYRO_Z_L [15:8]					
OEh	GYRO_Z_H [7:0]					

8.6. Accel Data

Accel data from -32768 to 32768, format by 16-bits signed numbers, unit = mm/s^2.

Gyro Data(09h~0Eh)						
Register(hex)	egister(hex) Name		Reset Value	BITS Description		
0Fh	ACCEL_X_L [15:8]					
10h	ACCEL_X_H [7:0]		0x0000	Data of the target axis [15:0]		
11h	ACCEL_Y_L [15:8]	р				
12h	ACCEL_Y_H [7:0]	R				
13h	ACCEL_Z_L [15:8]					
14h	ACCEL_Z_H [7:0]					

8.7. Direction of Axis

9. Dimensions

10. Disclaimer

The information contained on datasheet is for general information purposes only. KKITC assumes no responsibility for errors or omissions in the contents of the datasheet.

In no event shall KKITC be liable for any special, direct, indirect, consequential, or incidental damages or any damages whatsoever, whether in an action of contract, negligence or other tort, arising out of or in connection with the use of the Service or the contents of the datasheet.

KKITC reserves the right to make additions, deletions, or modification to the contents on the Service at any time without prior notice.

KKITC does not warrant that the website is free of viruses or other harmful components.